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Abstract

Members of multi-robot teams may need to collaborate
to accomplish a task due to differences in capabilities.
This paper describes an extension of the ALLIANCE
architecture that enables agent recruitment within a de-
centralized UAV-UGYV robot team without task preemp-
tion but 1) uses a formal model of emotions and 2)
handles heterogeneity. Affective computing allows re-
cruitment to be robust under loss of communication be-
tween agents and minimizes the number of messages
passed. Data from 66 simulations show that the affec-
tive strategy succeeds with a random message loss rate
up to 25% and requires 19.1% fewer messages to be
sent compared to greedy and random, and that of these,
affective scales best with team size. Comparisons of
broadcast to unicast messaging are also made in simu-
lation.

Introduction

Collaboration among members of a heterogeneous multi-
robot team is motivated by a need to complete tasks that
require more capabilities than a single robot can provide.
This paper contributes an affective recruitment protocol that
enables robots to request and receive assistance from other
members of the team using an emotional model. Simulation
results show that this approach is robust in terms of com-
munication losses, requires less communication than other
obvious methods, and that it scales well with the number of
robots in the team. Thus, although the task domain for this
work is landmine detection, other areas (such as low-power
systems, swarms, sensor networks, and stealth applications)
may also benefit.

The recruitment protocol described in this paper borrows
the standards-based emotion SHAME from Ortony’s formal
model of emotions (Ortony 2002). Emotions are useful in
robots, as they provide a mechanism for self-regulation, such
that a change in a robot’s state or behavior can be induced
(Murphy et al. 2002) if the robot is making no progress
on a task. Emotions have been shown to produce emer-
gent social interactions and improve task performance of
a team of heterogeneous robots (Murphy et al. 2002). In
this work, emotions determine when a robot decides to help
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another. The protocol is designed for a fully decentralized
robot team, without task preemption, and to be tolerant of
unreliable communications. It is assumed that the robots
have a common coordinate frame for the purposes of esti-
mating distances and for locating each other.

This paper presents a formal description of the protocol
and emotional model. This work is motivated by a landmine
detection task using a robot team with a single unmanned
aerial vehicle (UAV) and multiple unmanned ground vehi-
cles (UGVs). The UAV is tasked with performing a raster
scan over a minefield, identifying possible mines. When a
possible mine is detected, the UAV recruits a UGV, using
the affective recruitment strategy, to investigate further. Re-
sults from 72 simulations testing scalability, robustness un-
der communication failures, and the impact of unicast ver-
sus broadcast messaging are presented and discussed. Four
additional simulations of illustrative use-cases demonstrate
where greedy recruitment does not produce optimal results,
but affective does.

Related Work

(Cao et al. 1995) provides a survey of the issues inherent in
multi-robot cooperation. The work in this paper is an exten-
sion of the ALLIANCE architecture (Parker 1998) for coor-
dinating distributed multi-robots. ALLIANCE’s impatience
and acquiescence produce a behavior that closely resembles
recruitment: when a robot is having difficulty completing a
task, another robot will come over and relieve it. However,
there are four important differences between this work and
ALLIANCE. First, ALLIANCE assumes that the robots in
the team are all on the same task, and that any of them can
substitute for another. In our approach, teams of heteroge-
neous robots on different tasks can be used. Second, AL-
LIANCE implicitly assumes that the communication among
all members of the robot team is reliable, whereas in our ap-
proach, it is expected that communications (or even entire
robots) may fail at any time. Further, the recruitment proto-
col will compensate for temporary communication failures.
Third, ALLTIANCE assumes that a robot can be preempted
from its task, whereas in this approach, there is no preemp-
tion. The final difference is that this approach is based on a
formal theory of emotions by Ortony (Ortony 2002), where
SHAME is a standards-based emotion.

The work in this paper uses a contract-net protocol (CNP)



(Smith 1980) with a first-price auction (Monderer & Ten-
nenholtz 1998). MURDOCH (Gerkey & Mataric 2002) is
an instantaneous greedy task scheduler that also uses CNP
with a first-price auction; its communications impact in-
creases linearly with team size (Gerkey & Mataric 2003),
whereas the approach in this paper scales more slowly.
Other auction-based approaches include LEMMING (Ohko,
Hiraki, & Anzai 1996) that reduces communications by ap-
plying the outcome of one auction to successive auctions but
assumes that robots will stay in contact, and CEBOT (Cai,
Fukuda, & Arai 1997) that uses a World Model, which is not
appropriate for a decentralized approach.

Approach

In this approach, a fixed recruitment protocol begins with
a robot (requester) broadcasting a request for assistance (in
the form of a HELP message), and ends when another robot
(responder) has arrived and begun performing a task on
behalf of the requester. Our approach uses one primary
standards-based emotion (SHAME) to modulate responses
to HELP messages and determine when a robot will allow
itself to be recruited. As a robot refuses to help its team-
mates (by ignoring HELP messages), its SHAME increases.
When its level of SHAME passes a threshold, the robot will
respond. Once the robot decides to respond, its SHAME will
be reset to zero (just as motivations in ALLIANCE are re-
set when they cross a threshold (Parker 1998)). SHAME will
also decay over time.

Three communication issues guide the design of this pro-
tocol. First, the recruitment algorithm should use a minimal
amount of bandwidth. Applications that require low-power
or stealthy behavior benefit from prevention of unnecessary
transmissions, and in any case, the communication require-
ment should scale well with the number of agents. Second,
the delivery method for messages is broadcast. In our test
domain, the real robots will be using a wireless network
to communicate. Wireless Ethernet channels are a shared
medium, so any transmissions are automatically broadcasts,
and received packets that are not intended for a particular
robot are simply ignored. As a beneficial side-effect, the
amount of network traffic scales slowly with the size of the
robot team as seen in Results. The third design issue is that
the protocol must be robust in terms of network failure. In
a fully distributed system, it is assumed that anything can
fail at any time, and that no member of the team should wait
forever for a failed robot to respond. Therefore, the recruit-
ment protocol is based on a 3-way TCP/IP handshake and
recovers gracefully from lost messages or failed robots.

Implementation

The recruitment protocol uses a set of six messages. Each
message contains the ID number of the sender, the ID num-
ber of the recipient, if any, whether the message is broad-
cast or unicast, and a message type. There are six mes-
sage types in the recruitment protocol: HELP, ACCEPT,
RESPONDER, ARRIVAL, AGREE, and ACKACK.

The protocol is shown graphically in Figure 1. It begins
when the requester robot broadcasts a HELP message with
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Figure 1: Recruitment protocol in terms of the messages sent
between robots.

its location and a percept that a robot must have to be a re-
sponder. If another robot decides to assist, then it responds
with an ACCEPT message that contains an estimate of the
time needed to reach the requester based on the location pro-
vided in the HELP message and the robot’s rate of travel.
The process by which a robot decides whether to assist is
described after the protocol messages.

When the requester robot receives an ACCEPT message,
it broadcasts a RESPONDER message to all robots with the
ID of the responder. For the responder robot, this serves as
confirmation that its offer to help was accepted, and it will
begin moving to assist. For all other robots, this message is
an explicit notification that their help is not needed.

The second stage of the protocol begins when the respon-
der robot arrives near the requester robot and provides an
ARRIVAL message, which contains the duration of a lease.
The purpose of the lease is to compensate for a complete
failure of either robot or a loss of communications (as the
recruitment ends when the lease expires). If the requester
robot agrees to the lease, then it will respond with an AGREE
message. Finally, the responder robot will send an ACKACK
message and take over the investigation of the possible mine.
Once the analysis is complete, the agreed lease duration will
expire and the recruitment ends.

The affective recruitment strategy uses an emotional
model to determine under what conditions a robot will re-
spond to a HELP message, assuming that it is otherwise
available (not on task, able to provide the required percept).
At the heart of this model is the affective variable SHAME.
The notation for this model will be presented first, followed
by details on how to choose the parameters.

Given a team of n robots, {r1,...,r,}, each robot r; in
the team maintains a level of SHAME, s, such that) < s <1,
and s is initialized to zero. Each r; also has a threshold, ¢,
where ¢ < 1. Three additional parameters affect the behav-



ior of affective recruitment: c is a constant that is added to s
each time r; ignores a HELP message. d() is a function of
the distance D between the requester and r;, and is also used
to increase s. k() is a decay function in terms of elapsed time
AT since the previous HELP message.

When a HELP message arrives, each robot r; will first ac-
count for the decay of its SHAME since the previous request:
s is updated as s = s — k(AT). Next, if s > ¢, then robot
r; sends an ACCEPT message to the requester. Otherwise,
if s < ¢, then r; ignores the request and s is updated as
s=s+c+d(D).

The parameters were chosen based on experience as fol-
lows. t determines how resistant 7; is to being recruited.
If ¢t < 0, then affective recruitment will become greedy,
in which r; immediately offers its help when a request is
made. The more ¢ approaches 1, the more r; will ignore re-
quests before responding. In this work, the value ¢ = 0.75
was used. The terms ¢ and d() are related to ¢. ¢ controls
how quickly a distant robot will respond to a request. If
r; and the requester are infinitely far apart, then ¢/c is ap-
proximately the number of requests r; will ignore before re-
sponding (considering that s will decay between requests).
In this work, the value ¢ = 0.2 was used, so r; would
tend to respond after approximately 4 requests. d() penal-
izes r; for ignoring a request from a close neighbor, and
should increase as the distance D decreases. In this work,
d(D) = 0.5/D so that r; responds within two requests if
it is within 1 unit of the requester, and d() has little effect
beyond 10 units. The decay function k() determines how
quickly r; will lose its SHAME after ignoring a request. The
function k£(AT) = 0.005 x AT was used so that r; would
lose SHAME acquired from a single request in about 40 sec-
onds, and would require 200 seconds to go from s = 1 to
s = 0. This relatively low rate of decay keeps r; responsive
to the needs of the team; if the decay were faster, then pe-
riodic requests would tend to be ignored. If the decay were
negative, then r; would tend to “want” to help more over
time until it was recruited and s was subsequently reset to
Zero.

The requester robot will continue to send HELP messages
periodically until it receives an ACCEPT message in reply.
If the requester receives more than one ACCEPT message
in response to a single HELP broadcast, then it will examine
the ACCEPT messages and choose the sender that specified
the least time needed to arrive.

Experiments

Three recruitment strategies (greedy, random, and affective)
were tested in simulation for a mine detection task. The pur-
pose of these experiments was to measure the performance
of the recruitment strategies according to two metrics: the
number of messages sent among robots in the team, and the
total amount of time that a robot had to wait for assistance.
The size of the robot team, rate of random message loss, and
messaging type (unicast or broadcast) were varied to test the
impact on the recruitment process for each strategy.
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Figure 2: User interface for recruitment simulator. The UAV
(center) requests assistance, and all eligible robots with suf-
ficient SHAME respond (solid lines). Those that ignore the
request are marked with an X.

Simulated Scenario

In this task, one robot was designated as an unmanned aerial
vehicle (UAV) and performed a raster scan over a 100 x 100-
unit grid at a rate of 3 units per iteration. At five locations in
this scan, the UAV stopped, requested assistance, and waited
for another robot to arrive. At the end of the raster scan,
the UAV stopped for 20 seconds before performing the scan
again in the opposite direction.

Between 3 and 22 other simulated robots, representing
unmanned ground vehicles (UGVs), were placed in the
100 x 100-unit grid. Two of these robots were tasked with
raster scans of half of the grid each, at a rate of one unit
per iteration, stopping for 20 seconds (and becoming tem-
porarily available for recruitment) at the end of the scan be-
fore restarting in the opposite direction. An additional one
to twenty idle robots were distributed across the grid. The
number of idle robots was varied from one to twenty to test
the effect of team size on performance. These idle robots
were available for recruitment by the UAV at any time. For
each simulation testing the performance of a recruitment
strategy, the locations and behavior of all robots were the
same unless otherwise noted.

The simulator was coded in Java, using JINI, to test
robot recruitment. The simulator controlled three experi-
mental parameters: which recruitment strategy to use, the
rate of random communication failures, and which messag-
ing method (unicast or broadcast) to use. The simulator is
shown in Figure 2.

Recruitment Strategies

Three recruitment strategies were tested in simulation. The
first was affective recruitment, in which the closest idle robot



4 8|13 23
Affective | 48 | 51.67 | 61 79.7
Greedy 29 50 | 75 125
Random | 29 50 | 75 | 125.7

Table 1: Average number of messages transmitted for each
strategy for varying team size. The total number of robots in
the team is shown across the top of the table.

4 8 13 23
Affective | 377.4 | 2142 | 176.2 | 175.3
Greedy 260.2 120 93 92
Random 261 | 203.1 | 261.6 326

Table 2: Average UAV wait time according to team size,
measured in seconds. The total number of robots in the team
is shown across the top of the table.

whose SHAME was above a threshold was recruited for each
request.

The second recruitment strategy was greedy recruitment,
in which the idle robot with the minimum estimated time
to arrive was recruited for each request. While greedy re-
cruitment will tend to have the faster response times than
affective recruitment, because it does not spend time build-
ing up SHAME, it requires an additional message to be sent
from every idle robot so the requester can choose the least
arrival time, and thus does not scale well in terms of com-
munication overhead.

The third recruitment strategy was random recruitment, in
which an idle robot was chosen at random for recruitment.
When the requester transmitted a HELP message, each idle
robot replied to indicate its availability, and one of these was
then chosen randomly. As with greedy recruitment, this will
lead to a faster decision than affective recruitment, but does
not scale as well for communication. Further, random may
choose robots that are far away, which will tend to result in
longer response times.

Results

The results of three sets of simulations are provided below.
In these experiments, the team size, rate of communication
failures, and messaging type were varied to measure the ef-
fect on the recruitment strategies.

Effects of Team Size

The effect of varying the size of the robot team was mea-
sured using twelve simulations: for each of the three recruit-
ment strategies, a simulation was performed with 1, 5, 10,
and 20 idle robots. The metrics for this test were the total
number of messages sent among the robots, and the amount
of time that passed, in seconds, from the initial UAV requests
until a UGV arrived and was acknowledged. The results of
these simulations are shown in Tables 1 and 2.

These results indicate that the affective recruitment strat-
egy requires more messages to be sent than greedy or ran-
dom when there is only one robot that can be recruited but

that once the number of robots increases, affective recruit-
ment requires much less communication. The reason behind
this difference is that in affective recruitment, the UAV only
needs to send out HELP messages and wait for a single reply
to begin negotiating recruitment. As a result, the number of
messages that must be sent is almost constant. The variation
in the number of messages for affective recruitment occurs
when more than one robot responds to a particular HELP
message, or when all UGVs are far from the UAV and ad-
ditional HELP messages must be sent to push their level of
SHAME over the threshold. On the other hand, greedy and
random must solicit messages from all other members of the
team in order to make a choice, and the number of messages
per recruitment increases linearly with the team size.

These results also show that the amount of time that the
UAV spent waiting for help to arrive favors the greedy re-
cruitment strategy over affective recruitment. This is an ex-
pected result because affective recruitment requires time to
build up the level of SHAME in the robots before they will
respond. In these simulations, the UAV waited 3 seconds
between requests for help before calling again, and needed
to request from five to ten times per recruitment before it
received a response. If the parameters for updating SHAME
were tuned or learned, this difference between greedy and
affective could be reduced. Learning these parameters is a
direction for future work. In general, the faster a robot’s
SHAME exceeds the threshold, the closer affective recruit-
ment will resemble greedy, to the point that if the SHAME
exceeds the threshold after a single request, then the two
strategies are equivalent. One advantage of the affective re-
cruitment strategy is that it allows for a flexible trade-off
between response time and the number of messages trans-
mitted.

Finally, these results show that affective recruitment out-
performed random, because although a recruitment choice
was made immediately with random, the closest responder
was typically not chosen, so the time required for it to arrive
was higher than for the other strategies.

Note that in this set of simulations, the locations at which
the UAV made requests were fixed, and to prevent any bias
from the UGV positions, three randomly generated arrange-
ments of robots were used. The results reported above rep-
resent 36 simulations, and the averages are shown.

Effects of Communication Loss

An additional 27 simulations tested the effects of random
message loss for the recruitment strategies. Each of the three
strategies was tested with 5%, 10%, and 25% of the mes-
sages between robots being randomly dropped (not transmit-
ted, but with no notification to the sender). Ten idle robots
plus the two tasked UGVs and the UAV were used in each
simulation, for a total of 13 robots. In these simulations,
the choice of what messages to drop was made randomly by
the simulator, and the impact of that choice varied. Thus,
each of these tests was conducted three times to capture the
typical performance of each strategy. The results from these
simulations are shown in Tables 3 and 4.

These results show that the recruitment protocol contin-
ues to function despite network losses, and that the relative



0% 5% 10% | 25%
Affective | 61 81.3 67.3 | 147.3
Greedy 75| 107.3 | 117.7 | 161.7
Random 75 93 99.3 | 189.7

Table 3: Average number of messages transmitted according
to network failure rate. The rate of random message loss is
shown across the top of the table. Note that the 0% column
is repeated from Table 1.

0% 5% 10% | 25%
Affective | 176.2 | 311.7 | 190.1 | 587.4
Greedy 67 | 148.4 | 167.8 | 330.6
Random | 261.6 | 385.8 | 340.3 | 897.7

Table 4: Average UAV wait time, in seconds, according to
network failure rate. The rate of random message loss is
shown across the top of the table. Note that the 0% column
is repeated from Table 2.

performance of each of the recruitment strategies remains
consistent as the rate of message loss increases. As before,
affective recruitment requires the fewest messages to be sent,
on average, followed by greedy and random. In fact, random
performs better than greedy, when it was expected that they
would perform equally well (since they send the same num-
ber of messages when there are no losses). By the time that
losses reach 25%, the particular recruitment strategy used
does not make much difference, because at that point, there
is only an 18% likelihood that the six consecutive recruit-
ment messages required by the protocol will all be sent prop-
erly. As before, greedy recruitment still resulted in the least
time spent waiting by the UAV, followed by affective recruit-
ment.

A particular weakness of greedy recruitment is that the
UAV must obtain the locations of all eligible robots before it
can choose the nearest one. Assuming a decentralized team,
this requires an explicit communication from all other robots
to the UAV, which may be impacted by network losses. If the
nearest robot to the UAV fails to receive a HELP message
or to send a reply, then the UAV may commit to recruit-
ing a different, more distant robot, and be forced to await
its arrival. On the other hand, using affective recruitment,
the UAV will tend to make multiple requests, which reduces
the reliance on any single HELP message. Suppose that an
eligible robot, 71, is nearest to the UAV and fails to send
a reply due to network problems. Provided that no other
robots had sufficient SHAME to respond to that request (for
instance, if they were far away and accrued SHAME more
slowly), the UAV would quickly request again and have an-
other chance to recruit 1. In other words, requesting over
time can find solutions that even outperform greedy recruit-
ment, if the time between requests is less than the additional
time a more distant robot needs to arrive.

Broadcast | Unicast
Affective 67.3 379.3
Greedy 117.7 194
Random 99.3 183.3

Table 5: Average number of messages transmitted according
to messaging type. Note that the Broadcast column is the
same as the 10% column in Table 3.

Broadcast versus Unicast Messaging

Nine simulations were conducted to test the effect of us-
ing unicast (single-sender, single-receiver) transmissions in-
stead of broadcast in the recruitment protocol. In these sim-
ulations, instead of sending a single HELP message to all
other robots, the UAV would attempt to send HELP mes-
sages to all other robots individually. As with the network
failure tests, 13 robots were used, of which 10 were un-
tasked. A network failure rate of 10% was used. If there
had been no losses in this test, then the number of messages
would have trivially been a function of team size. The results
of these simulations are shown in Table 5. Note that due to
the random nature of the message losses, each strategy was
tested three times and the results were averaged.

These results show that affective recruitment relies on
broadcast messaging to minimize the total number of mes-
sages. Since affective recruitment sends multiple HELP
messages before another robot has high enough SHAME to
respond, these requests are multiplied by the number of idle
team members, which goes well beyond the number of mes-
sages required by greedy or random (for which a single
HELP message is sufficient). Thus, broadcast messaging is
better suited for this application than unicast.

Ilustrative Use Cases

Although the results above indicate that greedy recruitment
will tend to produce the shortest wait times for the UAYV, this
is not universally true. There are cases in which the affec-
tive recruitment strategy results in shorter wait times than
greedy. Suppose that there are three UGVs, rq, r2, r3, such
that ;1 is untasked, and r» and r3 perform a raster scan. Let
79 Move two units per iteration, while r; and r3 move one
unit. Thus, 7 and rg will finish their tasks at different times.
Next, suppose that at time step ¢y, the UAV sends a HELP
message, and two robots, 1 and r3 are idle, and although 79
can reach the UAV faster than r or r3, it is on task and can-
not respond. In the greedy and random strategies, r; or 73
would be chosen for recruitment immediately, whereas with
affective recruitment, no selection would be made, but all of
the UGVs would increase their levels of SHAME. If 75 fin-
ishes its task at time step ¢, it can then be recruited by the
UAV and arrive sooner than r; or r3. This particular case
was tested in simulation, and it was found that using affec-
tive recruitment, ro was chosen and arrived after 65.4 sec-
onds. The greedy and random strategies selected r; which
arrived after 95.2 seconds and 95.4 seconds, respectively.
Another simple use case demonstrates that through affec-
tive recruitment, the UAV will choose the nearest robot with-



out requiring that all robots reveal their locations (as with
the greedy strategy). Suppose that, as above, three robots
r1, T2, r3 are idle at a particular time ¢; when the UAV makes
a request, but the UAV is nearest 7. After each ignored
request, r3’s SHAME will increase faster than that of r; or
r3, because 7o is closest to the UAV. As a result, ro will
be the first to exceed its threshold for SHAME and will re-
spond before r; or r3. Thus, the UAV recruits the closest
robot without requiring all robots to transmit their locations.
This behavior has been verified in simulation. In this sce-
nario, the UAV broadcast 5 HELP messages, at which point
ro responded, and the recruitment completed normally. Nei-
ther r1 or r3 ever broadcast any messages. If this were a
low-power or stealth application, r; and r3 would have been
spared an unnecessary transmission by using affective re-
cruitment rather than greedy.

Robot Tests

The recruitment protocol was demonstrated on a pair of
ATRV-Jr. robots, where the robots responded to requests
from a simulated UAV. In these tests, the robots determined
their positions via GPS, and when recruited, navigated to a
specified waypoint. Further robot tests are ongoing.

Conclusions

Results from 66 simulations have shown that the affective
strategy resulted in 19.1% lower communications overhead
overall compared to greedy and random, and that affec-
tive scaled better (18.6% fewer messages sent with 10 idle
robots, 36.3% fewer with 20 idle robots). These simulations
have also shown that greedy required 39.4% less time to
complete recruitments overall when compared to affective.
Note that although affective recruitment required more
wait time to complete than greedy, the choice of parameters
in the simulation influenced the total time required. With
a careful selection or adaptation of parameters, affective re-
cruitment can compromise between response time and com-
munication requirements as needed for a particular domain.
These simulations also demonstrated that the recruitment
protocol is robust in terms of communication failures such
that it still functioned in an environment where 25% of all
messages were lost. With communication losses, affective
recruitment still required fewer transmissions than greedy
and random, though as above, greedy required the least time
to complete recruitments. The simulations have also pro-
vided experimental justification for using broadcasts instead
of unicast messaging when performing recruitment, as affec-
tive recruitment required 464% more messages (and greedy
required 65% more) using unicast than with broadcast.
These simulations assumed no preemption of robots from
their tasks, and it is expected that if this restriction were
lifted, affective recruitment would behave more intelligently
than greedy. In particular, affective builds up a level of ac-
tivation (SHAME) in the robots over time, whereas greedy
makes decisions based only on the current instant in time. In
terms of fairness (that is, which robots are chosen to assist),
affective is less likely to call on the same robot twice in a row
than greedy (because a robot’s SHAME resets to zero when

it is recruited). SHAME may also control other aspects of
behavior, such as causing a robot to suspend or abandon its
own task in order to help another, or at least make it “hurry
up.”

Future work will examine the impact of preemption in re-
cruitment as well as fit-matching perceptual capabilities of
robots to determine how well a given robot can perform the
task it is being recruited for (expanding on the metric eval-
uation in (Gerkey & Mataric 2002)). Methods for learning
the parameters used in affective recruitment will also be de-
veloped. Finally, the effect of non-linear parameters for up-
dating SHAME will be examined.
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